Publications in the recent 5 years (2016-2020) (* corresponding author; # co-supervised student or post-doc)
Part 1: 5 representative publications
1. Yang, Y.*, Ye, C.#, Galy, A., Fang, X.*, Xue, Y., Liu, Y.#, Yang, R.#, Zhang, R., Han, W., Zhang, W., Ruan, X.#, 2020. Monsoon Enhanced Silicate Weathering as a New Atmospheric CO2 Consumption Mechanism Contributing to Fast Late Miocene Global Cooling. Paleoceanography and Paleoclimatology, doi: 10.1029/2020PA004008.
2. Yang, Y.*, Ye, C.#, Yang, R.#, Fang, X., 2020. Revisiting clay‐sized mineral and elemental records of the silicate weathering history in the northern Tibetan Plateau during the late Cenozoic: The role of aeolian dust. Terra Nova, doi:10.1111/ter.12508.
3. Ruan, X.#, Yang, Y.*, Galy, A., Fang, X.*, Jin, Z., Zhang, F., Yang, R.#, Deng, L., Meng, Q., Ye, C.#, Zhang, W., 2019. Evidence for early (≥12.7 Ma) eolian dust impact on river chemistry in the northeastern Tibetan Plateau. Earth and Planetary Science Letters, 515, 79-89.
4. Yang, Y.*, Galy, A., Fang, X.*, Yang, R.#, Zhang, W., Zan, J., 2017. Eolian dust forcing of river chemistry on the northeastern Tibetan Plateau since 8 Ma. Earth and Planetary Science Letters, 464, 200-210.
5. Yang, Y.*, Fang, X., Galy, A., Jin, Z., Wu, F., Yang, R.#, Zhang, W., Zan, J., Liu, X., Gao, S., 2016a. Plateau uplift forcing climate change around 8.6 Ma on the northeastern Tibetan Plateau: evidence from an integrated sedimentary Sr record. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 418-431.
Part 2: all other publications (exclude part 1)
1. Ye, C.#, Yang, Y.*, Fang, X.*, Zhang, W., Song, C., Yang, R.#, 2020. Paleolake salinity evolution in the Qaidam Basin (NE Tibetan Plateau) between~ 42 and 29 Ma: Links to global cooling and Paratethys sea incursions. Sedimentary Geology, 409, 105778.
2. Song, B., Yang, Y.*, Yang, R.#*, Galy, A., Zhang, K., Ji, J., Liu, Y., Ai, C., Wang, C., Hou, Y., 2020. Miocene 87Sr/86Sr ratios of ostracods in the northern Qaidam Basin, NE Tibetan Plateau, and links with regional provenance, weathering and eolian input. Palaeogeography Palaeoclimatology Palaeoecology, 552, 109775.
3. Ye, C.#, Yang, Y.*, Fang, X.*, Zan, J., Tan, M., Yang, R., 2020. Chlorite weathering linked to magnetic enhancement in Red Clay on the Chinese Loess Plateau. Palaeogeography Palaeoclimatology Palaeoecology, 538, 109446.
4. Liu, X., Dong, S.*, Yue, Y.*, Guan, Q., Sun, Y., Chen, S., Zhang, J., Yang, Y.*, 2020. 87Sr/86Sr isotope ratios in rocks determined using inductively coupled plasma tandem mass spectrometry in O2 mode without prior Sr purification. Rapid Communications in Mass Spectrometry 34(8), e8690.
5. Lü, S., Ye, C. #, Fang, X., Appel, E., Han, F., Yan, M., Zhang, W., Zhang, T., Yang Y., Han, W. (2020). Middle to late Eocene chemical weathering history in the southeastern Tibetan Plateau and its response to global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, doi:10.1016/j.palaeo.2020.110136.
6. Song, B.*, Zhang, K.*, Hou, Y., Ji, J., Wang, J., Yang, Y., Yang, T., Wang, C., Shen, T., 2019. New insights into the provenance of Cenozoic strata in the Qaidam Basin, northern Tibet: Constraints from combined U-Pb dating of detrital zircons in recent and ancient fluvial sediments, Palaeogeography, Palaeoclimatology, Palaeoecology, 533, 109254
7. Fang, X., A. Galy, Yang, Y., W. Zhang, C. Ye, C. Song., 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47, 992-996.
8. Teng, X., Fang, X.*, Kaufman, A. Liu, C., Wang, J., Zan, J., Yang, Y., Wang, C., Xu, H., Schulte, R., Piatak. N., 2019. Sedimentological and mineralogical records from drill core SKD1 in the Jianghan Basin, Central China, and their implications for late Cretaceous–early Eocene climate change. Journal of Asian Earth Science,182, 1-14.
9. Zhang, J.*, Wang, Y., Fang, X., Wang, C., Yang, Y., 2019. Large dry-humid fluctuations in Asia during the Late Cretaceous due to orbital forcing: A modeling study. Palaeogeography, Palaeoclimatology, Palaeoecology, 533, 109230.
10. Han W.*, Lü, S., Appel, E., Berger, A., Madsen, D., Vandenberghe, J., Yu, L., Han, Y., Yang, Y., Zhang, T., Teng, X., Fang, X., 2019. Dust storm outbreak in central Asia after ~3.5 kyr BP. Geophysical Research Letters, 46, 7624-7633.
11. Mao, Z., Meng, Q.*, Fang, X.*, Zhang, T., Wu, F., Yang, Y., Zhang, W., Zan, J., Tan, M., 2019. Recognition of tuffs in the middle-upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 525, 44-56.
12. Yang, R.#, Yang, Y., Fang, X.*, Ruan, X.#, Galy, A., Ye, C.#, Meng, Q., & Han, W., 2019. Late Miocene intensified tectonic uplift and climatic aridification on the northeastern Tibetan Plateau: Evidence from clay mineralogical and geochemical records in the Xining Basin. Geochemistry, Geophysics, Geosystems, 20(2), 829-851.
13. Zhang W.*, Appel, E., Wang, J., Fang, X., Zan, J., Yang, Y., Miao, Y., Yan, X., 2019. New paleomagnetic constraints for Platybelodon and Hipparion faunas in the Linxia Basin and their ecological environmental implications. Global and Planetary Change, 176, 71-83.
14. Miao, Y.*, Wu, F.*, Warny, S., Fang, X., Lu, H., Fu, B., Song, C., Yan, X., Escarguel, G., Yang. Y., Meng, Q., Shi, P., 2019. Miocene fire intensification linked to continuous aridification on the Tibetan Plateau. Geology, 47(4), 303-307.
15. Bao, J., Song, C*., Yang, Y., Fang, X., Meng, Q., Feng, Y., & He, P., 2019. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. Journal of Asian Earth Sciences, 170, 155-165.
16. Li, X., Jiang, D.*, Tian, Z., Yang, Y., 2018. Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeography, Palaeoclimatology, palaeoecology, 512, 56-70.
17. Ye, C.#, Yang. Y.*, Fang, X.*, Hong, H., Wang, C., Yang, R.#, Zhang, W., 2018. Chlorite chemical composition change in response to the Eocene-Oligocene climate transition on the northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 512, 23-32.
18. Ye, C.#, Yang, Y., Fang, X.*, Hong, H., Zhang, W., Yang, R.#, Song, B., Zhang, Z., 2018. Mineralogical and geochemical discrimination of the occurrence and genesis of palygorskite in Eocene sediments on the northeastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 19, 567-581.
19. Yang, X., Cai, M.*, Ye, P.*, Yang, Y., Wu, Z., Zhou, Q., Li C., Liu, X., 2018. Late Pleistocene paleolake evolution in the Hetao Basin, Inner Mongolia, China. Quaternary International, 464, 386-395.
20. Zhang, D., Yan, M.*, Fang, X., Yang, Y., Zhang, T., Zan, J., Zhang, W., Liu, C., Yang, Q., 2018. Magnetostratigraphic study of the potash-bearing strata from drilling core ZK2893 in the Sakhon Nakhon Basin, eastern Khorat Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 489, 40-51.
21. Yang, R.#, Fang, X.*, Meng, Q., Zan, J., Zhang, W., Deng, T., Yang, Y., Ruan, X., Yang, L., Li, B., 2017. Paleomagnetic Constraints on the Middle Miocene-Early Pliocene Stratigraphy in the Xining Basin, NE Tibetan Plateau, and the Geologic Implications. Geochemistry, Geophysics, Geosystems. 18(11), 3741-3757.
22. Zhao, Y., Wu. F.*, Fang, X., Yang, Y., 2017. Altitudinal variations in the bulk organic carbon isotopic composition of topsoil in the Qilian Mountains area, NE Tibetan Plateau, and its environmental significance. Quaternary International, 454, 45-55.
23. Yang, Y.*, Yang, R.#, Li, X., Han, W., Fang, X., Appel, E., Galy, A., Wu, F., Yang S., Zan, J., Zhang, Z., Zhang, W., Ye, C.#, 2017. Glacial-interglacial climate change on the northeastern Tibetan Plateau over the last 600 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 476, 181-191.
24. Ye, C.#, Yang, Y.*, Fang, X., Zhang, W., 2016. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate. Sedimentary Geology, 346, 49-59.
25. Yang Y.*, Fang, X., Koutsodendris, A., Ye, C.#, Yang, R.#, Zhang, W., Liu, X., Gao, S., 2016b. Exploring Quaternary paleolake evolution and climate change in the western Qaidam Basin based on the bulk carbonate geochemistry of lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 446, 152-161.
26. Fang X.*, Wang, J., Zhang, W., Zan, J., Song, C., Yan, M., Appel, E., Zhang, T., Wu, F., Yang, Y., Lu, Y., 2016. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research. Global and Planetary Change, 145, 78-97.
27. Li, J.*, Li, M.*, Fang, X., Wang, Z., Zhang, W., Yang, Y., 2016. Variation of gypsum morphology along deep core SG-1, western Qaidam Basin (northeastern Tibetan Plateau) and its implication to depositional environments. Quaternary International, 430, 71-81.