研究员
姓名:
张国庆
性别:
学历:
博士
专家类别:
研究员
电话:
传真:
电子邮箱:
guoqing.zhang@itpcas.ac.cn
职称:
研究员
通讯地址:
北京市朝阳区林萃路16号院3号楼
简介

简介 

张国庆研究员围绕“全球变暖背景下青藏高原湖泊对气候变化的响应与灾害风险”这一科学问题,通过长期野外观测与遥感监测研究,开展了全面系统的研究,其成果提出了高原湖泊对全球变暖的响应规律、阐明了湖泊变化的灾害风险,丰富了湖泊遥感学的内涵。在NREE, NCC, PNAS、ESR、RSE、GRL等期刊发表SCI论文60多篇,总引用4000余次,第一/通讯作者论文30多篇,被IPCC、Nature、NG、NCC等引用、高被引论文5篇,单篇最高引用400余次。入选《科学通报》优秀作者,AGU中国高影响力论文,中国百篇最具影响国际学术论文。主持与参与第二次青藏高原综合科学考察研究、中科院A类先导专项、国家自然科学基金等项目。国际30余个期刊评审人(Science, Nature等),Frontiers in Earth Science和All Earth副主编。

教育与工作经历 

2020.09-至今,研究员,中国科学院青藏高原研究所 

2014.06-2020.08,副研究员,中国科学院青藏高原研究所 

2017.12-2018.12,访问学者,University of Zurich 

2013.08-2014.05,助理研究员,中国科学院青藏高原研究所 

2011.06-2013.07,博士后,中国科学院青藏高原研究所 

2009.09-2011.09,博士联合培养,The University of Texas at San Antonio 

2006.09-2011.06,博士 (硕博连读),中国地质大学 (北京) 

2002.07-2007.12,助教,讲师,东华理工大学 

1998.09-2002.06,本科, 东华理工大学

社会任职

1.国际期刊审稿:Science, Science Advance, Nature Reviews Earth & Environment, Nature Communications, Remote Sensing of Environment, Geophysical Research Letters, Water Resources Research, Journal of Geophysical Research, Journal of Hydrology, The Cryosphere 等

2. Guest Editor - Remote Sensing of Environment

3. Frontiers in Earth Science副主编

4. All Earth副主编

5. Water 副主编

6.《冰川冻土》编委

7.《遥感技术与应用》编委

研究方向

环境遥感;冰冻圈遥感

获奖及荣誉

2021年:西藏自治区科学技术二等奖(排名第一)

2021年:最有贡献的数据团队

2021年:中国百篇最具影响国际学术论文

2019年:MDPI优秀审稿人

2016年:《科学通报》优秀作者

2016年:2000-2015年AGU中国高影响力论文

2011年:中国地质大学 (北京) 优秀博士论文

承担科研项目情况

1. 国家自然科学基金面上项目,41871056,青藏高原内流区冰储量变化对湖泊水量平衡贡献的定量研究,2019/01-2022/12

2. 国家自然科学基金面上项目,41571068,第三极地区冰川补给湖与非冰川补给湖变化差异特征研究,2016/01-2019/12

3. 国家自然科学基金青年基金,41371068,基于多源遥感的青藏高原内流区湖泊水量变化及水体相态转换研究(2000-2009年),2014/01-2016/12

4. 国家自然科学基金国际合作与交流项目(中-瑞),21661132003,近期和未来中国冰湖演变:时空多样性及潜在危害,2017/01-2020/12,300万元,参与(第二)

代表论著

第一/通讯作者论文

1.   Yao, T.*, T. Bolch, D. Chen, J. Gao, W. Immerzeel, S. Piao, F. Su, L. Thompson, Y. Wada, L. Wang, T. W. W. Wang, G. Wu, B. Xu, W. Yang, G. Zhang*, and P. Zhao (2022), The imbalance of the Asian Water Tower, Nature Reviews Earth & Environment, doi: 10.1038/s43017-022-00299-4

2.   Zhang, G., Y. Ran, W. Wan, W. Luo, W. Chen, F. Xu, and X. Li (2021), 100 years of lake evolution over the Qinghai–Tibet Plateau, Earth System Science Data, 13(8), 3951-3966, doi: 10.5194/essd-13-3951-2021

3.   Zhang, G., and S. Duan (2021), Lakes as sentinels of climate change on the Tibetan Plateau, All Earth, 33(1), 161-165, doi: 10.1080/27669645.2021.2015870

4.   Chen, W.*, T. Yao, G. Zhang*, F. Li, G. Zheng, Y. Zhou, and F. Xu (2021), Towards ice thickness inversion: an evaluation of global DEMs by ICESat-2 in the glacierized Tibetan Plateau, The Cryosphere, 2021, 1-36, doi: 10.5194/tc-2021-197

5.   Xu, F., G. Zhang*, S. Yi, and W. Chen (2021), Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data, J Hydrol, 604, 127251, doi: 10.1016/j.jhydrol.2021.127251

6.   Rinzin, S., G. Zhang*, and S. Wangchuk (2021), Glacial lake area change and potential outburst flood hazard assessment in the Bhutan Himalaya, Frontiers in Earth Science, 9, 775195, doi: 10.3389/feart.2021.775195

7.   Zhang, G., T. Bolch, W. Chen, and J. F. Crétaux (2021), Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution, Science of the Total Environment 772, 145463, doi: 10.1016/j.scitotenv.2021.145463

8.   Zhang, G., T. Yao, H. Xie, K. Yang, L. Zhu, C. K. Shum, T. Bolch, S. Yi, S. Allen, L. Jiang, W. Chen, and C. Ke (2020), Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms, Earth-sci Rev, 208, 103269, doi: 10.1016/j.earscirev.2020.103269 [高被引论文]

9.   Zhang, G., et al. (2020), Are China’s water bodies (lakes) underestimated? Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1922250117

10.  Luo, W., G. Zhang*, W. Chen, and F. Xu (2020), Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range, Sci Total Environ, 139607, doi:10.1016/j.scitotenv.2020.139607..

11.  Zhang, G., W. Chen, G. Li, W. Yang, S. Yi, and W. Luo (2020), Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle, Remote Sens Environ, 237, 111554, doi: 10.1016/j.rse.2019.111554

12.  Zhang, Y., G. Zhang*, and T. Zhu (2019), Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data, Sci Total Environ, doi: 10.?1016/?j.?scitotenv.?2019.?135563

13.  Zhang, G., et al. (2019), Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes, Remote Sens Environ, 221, 386-404, doi: 10.1016/j.rse.2018.11.038. [高被引论文]

14.  Zhang, G., et al. (2019), Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions, Geophys Res Lett, doi: 10.1029/2019GL085032

15.  Zhang, G., et al. (2019), A robust but variable lake expansion on the Tibetan Plateau, Science Bulletin, 64(18), 1306-1309, doi: 10.1016/j.scib.2019.07.018

16.  Zhang, G., T. Bolch, S. Allen, A. Linsbauer, W. Chen, and W. Wang (2019), Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964?2017, Journal of Glaciology, doi:10.1017/jog.2019.13

17.  Khadka, N., G. Zhang*, and W. Chen (2019), The state of six dangerous glacial lakes in the Nepalese Himalaya, Terrestrial, Atmospheric and Oceanic Sciences. doi: 10.3319/TAO.2018.09.28.03

18.  Khadka, N., G. Zhang*, and S. Thakuri (2018), Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017), Remote Sensing, 10(12), 1913, doi: 10.3390/rs10121913

19.  Zhang, G., et al. (2017), Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin, Geophys Res Lett, 44, 5550-5560, doi: 10.1002/2017GL073773 [高被引论文]

20.  Zhang, G., G. Zheng, Y. Gao, Y. Xiang, Y. Lei, and J. Li (2017), Automated water classification in the Tibetan Plateau using Chinese GF-1 WFV data, Photogrammetric Engineering & Remote Sensing, 83(3), 33-43, doi: 10.14358/PERS.83.7.415

21.  Zhang, G., et al. (2017), Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades, Geophys Res Lett, 44, 252-260, doi: 10.1002/2016GL072033. [高被引论文]

22.  Zhang, G., J. Li, and G. Zheng (2017), Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods, Int J Remote Sens, 38(3), 742-772, doi: 10.1080/01431161.2016.1271478.

23.  Yu, J., G. Zhang*, T. Yao, H. Xie, H. Zhang, C. Ke, and R. Yao (2016), Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau, IEEE T Geosci Remote, 54(4), 2171-2180, doi: 10.1109/TGRS.2015.2496950.

24.  Zhang, G., T. Yao, H. Xie, W. Wang, and W. Yang (2015), An inventory of glacial lakes in the Third Pole region and their changes in response to global warming, Global Planet. Change 131, 148-157, doi: 10.1016/j.gloplacha.2015.05.013

25.  Zhang, G., T. Yao, H. Xie, J. Qin, Q. Ye, Y. Dai, and R. Guo (2014), Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data, Journal of Geophysical Research: Atmospheres, 119(14), 8552-8567, doi: 10.1002/2014JD021615

26.  Zhang, G., H. Xie, T. Yao, H. Li, and S. Duan (2014), Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM), J. Hydrol., 519, 976-987, doi: 10.1016/j.jhydrol.2014.08.022

27.  Zhang, G., T. Yao, H. Xie, K. Zhang, and F. Zhu (2014), Lakes' state and abundance across the Tibetan Plateau, Chinese Science Bulletin, 59(24), 3010-3021, doi:10.1007/s11434-014-0258-x. [2015年优秀作者]

28.  Zhang, G., T. Yao, H. Xie, S. Kang, and Y. Lei (2013), Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40(10), 2125-2130, doi:10.1002/grl.50462

29.  Zhang, G., H. Xie, T. Yao, and S. Kang (2013), Water balance estimates of ten greatest lakes in China using ICESat and Landsat data, Chin. Sci. Bull. , 58(31), 3815-3829, doi: 10.1007/s11434-013-5818-y

30.  Zhang, G., H. Xie, T. Yao, T. Liang, and S. Kang (2012), Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010), Water Resour. Res., 48(10), W10529, doi: 10.1029/2012WR011971

31.  Zhang, G., H. Xie, S. Duan, M. Tian, and D. Yi (2011), Water level variation of Lake Qinghai from satellite and in situ measurements under climate change, J. Appl. Remote Sens., 5, 053532, doi: 10.1117/1.3601363

32.  Zhang, G., H. Xie, S. Kang, D. Yi, and S. F. Ackley (2011), Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009), Remote Sens. Environ., 115(7), 1733-1742, doi: 10.1016/j.rse.2011.03.005. [高被引论文]

33.  张国庆, 王蒙蒙, 周陶, 陈文锋 (2022), 青藏高原湖泊面积、水位与水量变化遥感监测研究进展, 遥感学报, 26(1), doi: 10.11834/jrs.20221171

34.  张国庆 (2018), 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展, 地理科学进展, 37(2), 214-223, doi: 10.18306/dlkxjz.2018.02.004. [基金委青年基金优秀结题报告约稿]

35.  张国庆, Xie H., 姚檀栋, 康世昌, 2013. 基于ICESat和Landsat的中国10大湖泊水量平衡估算. 科学通报, 58(26): 2664-2678.

共同作者论文

1.   Zheng, G., S. Allen, A. Bao, J. B. Canovas, M. Huss, G. Zhang, J. Li, Y. Yuan, L. Jiang, T. Yu, and W. Chen (2021), Increasing risk of glacial lake outburst floods from future Third Pole deglaciation, Nature Climate Change, doi: 10.1038/s41558-021-01028-3

2.   Khadka, N., X. Chen, N. Yong, S. Thakuri, G. Zheng, and G. Zhang (2021), Evaluation of Glacial Lake Outburst Flood susceptibility using multi-criteria assessment framework in Mahalangur Himalaya, Frontiers in Earth Science, doi: 10.3389/feart.2020.601288

3.   Chen, W., T. Yao, G. Zhang, S. Li, and G. Zheng (2021), Accelerated glacier mass loss in the largest river and lake source regions of the Tibetan Plateau and its links with local water balance over 1976–2017, J Glaciol, 1-15, doi: 10.1017/jog.2021.9

4.   Liu, Y., H. Chen, H. Li, G. Zhang, and H. Wang (2021), What induces the interdecadal shift of the dipole patterns of summer precipitation trends over the Tibetan Plateau?, Int J Climatol, doi: 10.1002/joc.7122

5.   Zhang, J., J. Zhou, G. Zhang, Y. Ji, Y. Zeng, W. Fan, and A. Aikelamu (2021), Climate- and human-driven variations in lake area and number in North Xinjiang, China, Int J Remote Sens, 42(2), 469-485, doi: 10.1080/01431161.2020.1809740

6.   Zhang, H., F. Zhang, G. Zhang, W. Yan, and S. Li (2020), Enhanced scaling effects significantly lower the ability of MODIS normalized difference snow index to estimate fractional and binary snow cover on the Tibetan Plateau, J Hydrol, 592, doi: 10.1016/j.jhydrol.2020.125795

7.   Liu, Y., Chen, H., Zhang, G., Sun, J., Li, H. and Wang, H., 2020. Changes in lake area in the Inner Mongolian Plateau under climate change: the role of the Atlantic Multidecadal Oscillation and Arctic sea ice. Journal of Climate, 33: 1335-1349, doi: 10.1175/jcli-d-19-0388.1

8.   Liu, D., H. Duan, S. Loiselle, C. Hu, G. Zhang, J. Li, H. Yang, J. R. Thompson, Z. Cao, M. Shen, R. Ma, M. Zhang, and W. Han (2020), Observations of water transparency in China’s lakes from space, International Journal of Applied Earth Observation and Geoinformation, 92, 102187, doi: 10.1016/j.jag.2020.102187

9.   Roohi, S., N. Sneeuw, J. Benveniste, S. Dinardo, E. A. Issawy, and G. Zhang (2020), Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies, Adv Space Res, doi: 10.1016/j.asr.2019.06.024

10.  Allen, S. K., G. Zhang, W. Wang, T. Yao, and T. Bolch (2019), Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach, Science Bulletin, 64(7), 435-445, doi: 10.1016/j.scib.2019.03.011

11.  Liu, Y., H. Chen, G. Zhang, J. Sun, and H. Wang (2019), The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau, Science Bulletin, 64(20), 1486-1489, doi: 10.1016/j.scib.2019.08.011

12.  Tang, W., J. Li, K. Yang, J. Qin, G. Zhang, and Y. Wang (2019), Dependence of remote sensing accuracy of global horizontal irradiance at different scales on satellite sampling frequency, Sol Energy, 193, 597-603, doi: 10.1016/j.solener.2019.10.007

13.  Zheng, G., A. Bao, J. Li, G. Zhang, H. Xie, H. Guo, L. Jiang, T. Chen, C. Chang, and W. Chen (2019), Sustained growth of high mountain lakes in the headwaters of the Syr Darya River, Central Asia, Global Planet Change, 176, 84-99, doi: 10.1016/j.gloplacha.2019.03.004

14.  Zhu, S., B. Liu, W. Wan, H. Xie, Y. Fang, X. Chen, H. Li, W. Fang, G. Zhang, M. Tao, and Y. Hong (2019), A New Digital Lake Bathymetry Model Using the Step-Wise Water Recession Method to Generate 3D Lake Bathymetric Maps Based on DEMs, Water, 11(6), 1151, doi: 10.3390/w11061151

15.  Liu, B., W. Wan, H. Xie, H. Li, S. Zhu, G. Zhang, L. Wen, and Y. Hong (2019), A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981–2015, Scientific Data, 6(1), 48, doi: 10.1038/s41597-019-0040-7

16.  Jiang, L., O. B. Andersen, K. Nielsen, G. Zhang, and P. Bauer-Gottwein (2019), Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco, Remote Sens Environ, doi: 10.1016/j.rse.2018.11.004

17.  Cai, Y., C. Ke, X. Li, G. Zhang, Z. Duan, and H. Lee (2019), Variations of Lake Ice Phenology on the Tibetan Plateau from 2001 to 2017 Based on MODIS Data, Journal of Geophysical Research: Atmospheres, Accepted

18.  Zhang, H., F. Zhang, G. Zhang, T. Che, W. Yan, M. Ye, and N. Ma (2019), Ground-based evaluation of MODIS snow cover product V6 across China: implications for the selection of NDSI threshold, Sci Total Environ, doi: 10.1016/j.scitotenv.2018.10.128

19.  Hwang, C., Y. Cheng, W. Yang, G. Zhang, Y. Huang, W. Shen, Y. Pan, (2018), Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat and Jason-2 altimeters, Terrestrial, Atmospheric and Oceanic Sciences, doi: 10.3319/TAO.2018.07.09.01

20.  Xiang, Y., T. Yao, Y. Gao, G. Zhang, W. Wang, and L. Tian (2018), Retreat rates of debris-covered and debris-free glaciers in the Koshi River Basin, central Himalayas, from 1975 to 2010, Environmental Earth Sciences, 77, doi: 10.1007/s12665-018-7457-8

21.  Zhang, H., F. Zhang, G. Zhang, T. Che, and W. Yan (2018), How accurately can the air temperature lapse rate over the Tibetan Plateau be estimated from MODIS LSTs?, Journal of Geophysical Research: Atmospheres, doi: 10.1002/2017JD028243

22.  Zhang, H., F. Zhang, G. Zhang, Y. Ma, K. Yang, and M. Ye (2018), Daily air temperature estimation on glacier surfaces in the Tibetan Plateau using MODIS LST data, J Glaciol, 1-16, doi: 10.1017/jog.2018.6

23.  Liu, W., F. Sun, Y. Li, G. Zhang, Y. F. Sang, W. H. Lim, J. Liu, H. Wang, and P. Bai (2018), Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets, Hydrol. Earth Syst. Sci., 22(1), 351-371.

24.  Yang, K., H. Lu, S. Yue, G. Zhang, Y. Lei, L. Zhu, and W. Wang (2018), Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau, Climatic Change, doi: 10.1007/s10584-017-2127-5

25.  Lei, Y., T. Yao, K. Yang, Y. Sheng, M. Kleinherenbrink, S. Yi, B. W. Bird, X. Zhang, L. Zhu, and G. Zhang (2017), Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology, Geophys Res Lett, 44(2), 892-900, doi: 10.1002/2016GL072062.

26.  Zhang, H., F. Zhang, G. Zhang, X. He, and L. Tian (2016), Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan Plateau, Atmos. Chem. Phys., 2016(16), 13681-13696.

27.  Zhang, H., Zhang, F., Ye, M., Che, T., Zhang, G., 2016. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data. Journal of Geophysical Research: Atmospheres, 121(19): 11425-11441, doi: 10.1002/2016JD025154

28.  O'reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J. D., Mcintyre, P. B., Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., Austin, J., Bailey, J. L., Baron, J. S., Brookes, J. D., De Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K. D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D. M., Macintyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C. E., & Zhang, G., Rapid and highly variable warming of lake surface waters around the globe, Geophys. Res. Lett., 42(24): 10773-10781, doi: 10.1002/2015GL066235 [Nature 报道] [Science 报道] [高被引论文]

29.  Wang, W., Y. Gao, P. Iribarren Anacona, Y. Lei, Y. Xiang, G. Zhang, S. Li, and A. Lu (2015), Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas, Geomorphology, doi: 10.1016/j.geomorph.2015.08.013.

30.  Lei, Y., K. Yang, B. Wang, Y. Sheng, B. W. Bird, G. Zhang, and L. Tian (2014), Response of inland lake dynamics over the Tibetan Plateau to climate change, Clim. Change 125, 281-290, doi:10.1007/s10584-014-1175-3.

31.  Huang, X., H. Xie, G. Zhang, and T. Liang (2013), A novel solution for outlier removal of ICESat altimetry data: a case study in the Yili watershed, China, Frontiers of Earth Science, 7(2), 217-226, doi:10.1007/s11707-013-0362-2.

32.  朱立平, 彭萍, 张国庆, 乔宝晋, 刘翀, 杨瑞敏, 王君波 (2020), 全球变化下青藏高原湖泊在地表水循环中的作用, 湖泊科学, 32(3), 597-608.

33.  朱立平, 张国庆, 杨瑞敏, 刘翀, 阳坤, 乔宝晋, 韩博平, 2019. 青藏高原最近40年湖泊变化的主要表现与发展趋势. 中国科学院院刊, 34(11): 1254-1263.

34.  邬光剑, 姚檀栋, 王伟财, 赵华标, 杨威, 张国庆, 李生海, 余武生, 类延斌, 胡文涛, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292.

35.  姚檀栋, 朴世龙, 沈妙根, 高晶, 杨威, 张国庆, 类延斌, 高杨, 朱立平, 徐柏青, 2017. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应. 中国科学院院刊, 32(9): 976-984.

36.  戴玉凤, 高杨, 张国庆, 向洋, 2013. 2003-2011年青藏高原佩枯错相对水量变化及其对气候变化的响应. 冰川冻土, 35(03): 723-732.

专著

1.   Bolch, T, Shea, JM, Liu, S, Azam, FM, Gao, Y, Gruber, S, Immerzeel, W, Kulkarni, A, Tahir, A, Zhang, G, Zhang, Y, Bannerjee, A, Berthier, E, Brun, F, K??b, A, Kraaijenbrink, P, Moholdt, G, Nicholson, L, Pepin, N, Racoviteanu, A & Fujita, K 2018, Status and change of the HKH Cryosphere. in P Wester, A Mishra, A Mukherji & AB Shrestha (eds), The Hindu Kush Himalaya Assessment – Mountains, Climate Change, Sustainability and People. Springer.

2.   Xie, H., T. Liang, X. Wang, and G. Zhang, 2015. Remote sensing mapping and modeling of snow cover parameters and applications (Chapter 10). Remote Sensing Handbook Volume III: Water Resources, Disasters, and Urban Monitoring, Modeling, and Mapping, edited by P.S. Thenkabail, Taylor & Francis Group Press