11/2009 –至今: 研究员,中国科学院青藏高原研究所,北京
4/2008 –10/2009: Research Scientist, University of Washington (华盛顿大学), Seattle,USA
8/2007 – 3/2008: Research Scientist: USRA/MSFC/NASA(美国国家宇航局),Huntsville, USA
1/2003 – 6/2007: 博士后, University of Washington (华盛顿大学), Seattle,USA
1/2002– 12/2002: 博士后, 中国科学院大气物理研究所, 北京, 中国
9/1998-12/2001:博士,专业: 水文水资源,南京河海大学
9/1995-9/1998:硕士,专业: 水文水资源,新疆农业大学
9/1991- 7/1995:学士,专业: 水利与土木工程,新疆农业大学
主要成果:
高海拔山区降水数据缺乏、冰川水文过程模拟方法是制约深入认识气候变化影响下青藏高原水文水资源变化的重要因素。成果主要集中在对高海拔山区冰雪流域降水空间分布规律的认识和降水序列重建,冰川水文模型的发展和构建,及高原尺度的径流模拟和预测:
1)发现了第三极西风和季风主导流域降水呈现不同梯度特征;反演和重建了典型西风和季风主导流域的高山区降水,使得这些流域准确水文模拟和预测成为可能;
2)实现能量平衡冰川模块与分布式陆面水文模型VIC的耦合,并在流域尺度上完成了物质和能量平衡及冰川径流的验证, 相对于以往的度日法,此研究从理论和实践上都前进了重要一步;
3)较早系统性地定量揭示了冰川径流对高原主要江河源区总径流,青藏高原第一大和第二大湖泊色林错和纳木错湖泊扩张,及典型流域陆地水储量变化的贡献,并预估了高原未来100年气候及径流的可能变化. 研究成果主要发表在JGR, JC, GPC, JH, JHM, 及《科学通报》等期刊上.
高山区降水和寒区水文过程 、多尺度陆面水文过程模拟 、第三极径流对气候变化的响应
1. 国家自然科学基金面上项目(41871057)“第三极典型冰雪补给流域径流对气候变化的响应研究”,2019-2022,主持
2. 中国科学院战略先导性科技专项(A) “泛第三极环境变化与绿色丝绸之路建设”子课题 “西风-季风区径流变化及其影响”(XDA20060202)“锡尔河出山口径流及其变化”专题负责人,2018-2022
3. 国家自然科学基金重大研究计划项目(91747201)“气候变化驱动下雅鲁藏布江冰川冻土植被协同变化及其径流效应”,2018-2021,主要参加人,负责 “雅鲁藏布江气候冰川变化与径流效应” 内容
4. 中国科学院国际合作局对外合作重点项目(131C11KYSB20160061),泛第三极环境与“一带一路”协同发展,2016-2021,已结题,参加
5. 中国科学院战略先导性科技专项(B) “现代高原的地表各圈层相互作用”,2012-2017,已结题,参加
6. 国家自然科学基金重点项目“第三极地区冰川物质-能量平衡与消融过程”,2012-2016,已结题,参加
7. 国家重点基础研究发展计划项目(“973”项目)全球变化专项“青藏高原气候系统变化及其对东亚区域的影响与机制研究”第二课题“青藏高原多圈层作用过程对气候变化的响应研究”,2010-2014,已结题,参加
8. 国家自然科学基金面上项目“青藏高原主要江河源区水文水资源对气候变化的响应研究”,2012-2015,已结题,主持
1. Tong, K., F. Su*, and C. Li (2020), Modeling of Water Fluxes and Budget in Nam Co Basin during 1979–2013, Journal of Hydrometeorology, 21(4), 829-844
2. Li Y., F. Su*, D. Chen, and Q. Tang (2019). Atmospheric Water transport to the Endorheic Tibetan Plateau and its Effect on Hydrological Status in the Region. Journal of Geophysical Research, 124. https://doi.org/10.1029/2019JD031297
3. Meng F., F. Su*, Y. Li, and K. Tong (2019). Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau. Journal of Geophysical Research. 124(6), 2909-2931.. https://doi.org/10.1029/2019JD031297
4. Ren Z., F. Su*, B. Xu, Y. Xie, and B. Kan (2018). A coupled glacier–hydrology model and its application in eastern Pamir. Journal of Geophysical Research, 123(24), 13,692-13,713.
5. Kan B., F. Su*, B. Xu, Y. Xie, J. Li, and H. Zhang (2018). Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the Upper Yarkant basin in the Karakoram. Journal of Geophysical Research, DOI: 10.1029/2017JD028055.
6. Li C., F. Su*, D. Yang, K. Tong, F. Meng, and B. Kan (2018). Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014. International Journal of Climatology,38:708-728.
7. Tong K., F. Su*, and B. Xu (2016). Quantifying the contribution of glacier-melt water in the expansion of the largest lake in Tibet. Journal of Geophysical Research, 121: 11158–11173
8. Su F.*, L. Zhang, T. Ou, D. Chen, T. Yao, K. Tong, and Y. Qi (2016). Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planetary Change, 136: 82-95.
9. Meng F., F. Su*, D. Yang, K. Tong, and Z. Hao (2016). Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. Journal of Hydrology: Regional Studies, 2016, 6: 66-81.
10. Tong K., F. Su*, D. Yang, and Z. Hao (2014). Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519: 423-437
11. Tong K., F. Su*, D. Yang, L. Zhang and Z. Hao (2014). Tibetan Plateau Precipitation as Depicted by Gauge Observations, Reanalyses and Satellite Retrievals. International Journal of Climatology, 2014, 34: 265-285
12. Zhang L., F. Su*, D. Yang, Z. Hao and K. Tong (2013). Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research, 2013, 118, DOI: 10.1002/jgrd.50665.
13. Su F.*, X. Duan, D. Chen, Z. Hao and L. Cuo (2013). Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. Journal of Climate, 2013, 26: 3187-3208
14.Sun H. and F. Su* (2020), Precipitation correction and reconstruction for streamflow simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau (2020), Journal of Hydrology, 590, 125484
15. 孙赫, 苏凤阁*, 黄敬恒, 姚檀栋, 罗毅, Deliang Chen (2020). 第三极西风和季风主导流域源区降水呈现不同梯度特征. 科学通报, 65(91). doi: 10.1360/TB-2019-0491
其它论著:
16. Su F.*, H. Gao, G. J. Huffman, D. P. Lettenmaier (2011). Potential utility of the real-time TMPA-RT precipitation estimates in Streamflow prediction. Journal of Hydrometeorology, 2011, 12(3), 444-455.
17. Su F.*, D. P. Lettenmaier (2009). Estimation of surface water budget of La Plata Basin. Journal of Hydrometeorology, 10(4), 981-998.
18. Su F.*, H. Yang, D. P. Lettenmaier (2008). Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin. Journal of Hydrometeorology, 9(4), 622-640.
19. Su F.*, J. C. Adam, K. E. Trenberth, D.P. Lettenmaier (2006). Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. Journal of Geophysical Research, 11
20. Su F.*, J. C. Adam, L. C. Bowling, D. P. Lettenmaier (2005). Streamflow simulations of the terrestrial Arctic domain. Journal of Geophysical Research, 2005, 110
21. Tang Q., H. Gao, P. Yeh, T. Oki, F. Su, D. P. Lettenmaier (2010). Dynamics of Terrestrial Water Storage Change from Satellite and Surface Observations and Modeling. Journal of Hydrometeorology, 11(1), 156-170.
22. Adam J. C., I. Haddeland, F. Su, D. P. Lettenmaier (2007). Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' Rivers. Journal of Geophysical Research, 112, D24114, DOI:10.1029/2007JD008525.
23. Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, F. Su (2013). Climate Change on the Northern Tibetan Plateau during 1957-2009: Spatial Patterns and Possible Mechanisms. Journal of Climate, 2013, 26(1): 85-109.
24. Lettenmaier D. P and F. Su, Chapter 9: Progress in hydrological modeling over high latitudes under Arctic Climate System Study (ACSYS), In: Lemke, Pand H.-W.Jacobi (Eds.), Arctic Climate Change: The ACSYS Decade and Beyond, Atmospheric and Oceanographic Sciences Library 43, pp357-380, Springer Science+Business Media B.V. 2012.
25. Demaria E. M. C., D. A. Rodriguez, E. E. Ebert, P. Salio, F. Su, J. B. Valdes. Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach. Journal of Geophysical Research, 2011, 116, D08103, DOI:10.1029/2010JD015157.
26. Cuo, L., T. K. Beyene, N. Voisin, F. Su, D. P. Lettenmaier (2011), M., Alberti, J. E. Richey. Effects of mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound basin, Washington. Hydrological Processes, 2011, 25(11): 1729-1753.
27. Zhang Y., F. Su, Z. Hao, C. Xu, Z. Yu, L. Wang, and K. Tong (2015). Impact of projected climate change on the hydrology in the headwaters of the Yellow River Basin. Hydrological Processes, 29(20): 4379-4397
28. 孙赫, 苏凤阁 (2020). 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用. 地理科学进展,DOI: 10.18306/dlkxjz.2020.00.000.
29. 汤秋鸿, 兰措, 苏凤阁, 等 (2019). 青藏高原河川径流变化及其影响研究进展. 科学通报, doi: 10.1360/TB-2019-0141.
30. 张人禾, 苏凤阁, 江志红, 高学杰, 郭东林, 倪健, 游庆龙, 兰措, 周波涛. 青藏高原21世纪气候和环境变化预估研究进展. 科学通报, 2015, 60(32): 3036-3047.
31. 阚宝云, 苏凤阁, 童凯, 张磊磊. 四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析. 冰川冻土, 2013, 35(3): 710-722.